

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-02-02

<u>Summary</u>

<u>Hall A – ECal</u>

George Jacobs, Mindy Leffel, Marc McMullen

- Assembling supermodules 15 of 57 complete
- Measured, and sorted by length, 47 lead-glass assemblies
- Cut 60 foils and wrapped 27 light guides

Hall A – GEM

Brian Eng, George Jacobs, Marc McMullen

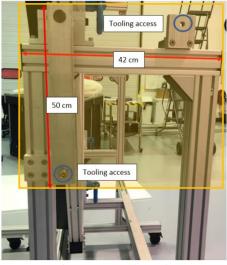
- Continued rendition of gas flow sensor chassis model in NX12
- Started rendition of regulator panel in NX12

<u>Hall A – SoLID</u>

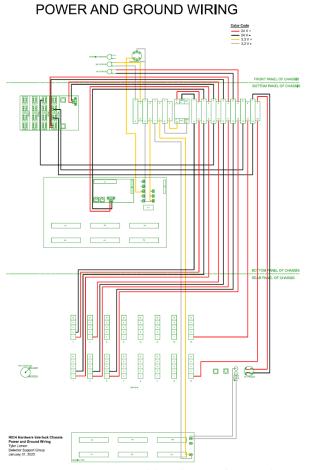
Mary Ann Antonioli, Pablo Campero, Brian Eng, Mindy Leffel, and Marc McMullen

- Configured Ethernet port to connect PLC to the Hall A dev subnet
- Powered up Instrumentation Racks A and B
- Tested 120 V supply to the PLC power supply chassis and to the communication module power supply located in Rack B
- Tested 24 and 5 V supply to instrumentation
- Cut 60 of 64, 100' cables; crimped ferrules on one end of all cables and labeled

<u>Hall B – RICH-II</u>


Mary Ann Antonioli, Peter Bonneau, Pablo Campero, Brian Eng, George Jacobs, Tyler Lemon, and Marc McMullen

- Rotated RICH to horizontal position
- Completed test installation of electronic panel (EP) to verify new procedure
 - * EP will be installed while detector shell is horizontal
 - ★ EP installation frame is lowered on to detector shell with gantry
 - ★ EP is leveled using a three-point leveling setup on frame
 - ★ EP is lowered the last few inches into place using threaded rods on installation frame
- Determined that EP frame needs covers fabricated to eliminate pinch points
 - ★ Cover size should be 42 cm x 50 cm with side walls

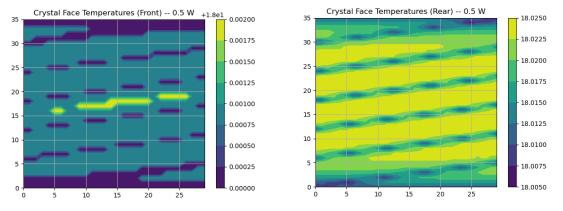

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-02-02

EP frame cover dimensions

• Created wiring diagrams for hardware interlock chassis – one for power and ground, one for signals

Power and ground wiring diagram for chassis


2 DSG Weekly Report, 2022-02-02

<u>Hall C – NPS</u>

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, and Marc McMullen

- Modified Python script to parse results file from Ansys thermal analysis of crystal array
 - * Added code to generate contour plots of front and rear crystal face temperature probe values
 - Initial plots indicate problems with the code

Contour plots of front and rear crystal face temperature probe values

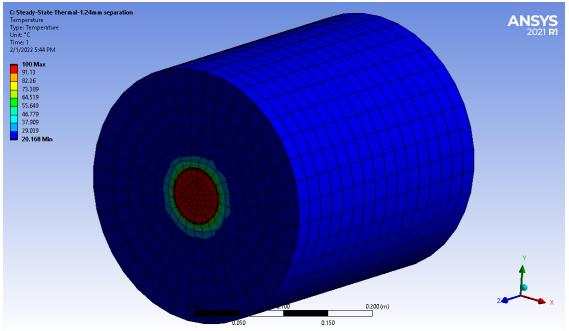
- Developing LabVIEW chiller device drivers to read from and write to the chillers four of nine complete
 - ★ Write temperature
 - ★ Write over temperature limit
 - ★ Write under temperature limit
 - ★ Write offset calibration
- Installed 15 K-type thermocouples in Keysight terminal block #1 47 of 112 installed

<u>Hall D – WEDM</u>

Tyler Lemon

- Updated WEDM screens for COMCAL chiller, BCAL chillers, and GlueX overview
 - ★ Corresponding CSS screens for COMCAL and BCAL chillers had been modified to display more information and add an expert control screen
 - ★ GlueX overview screen had minor corrections needed
- Created new WEDM screen for Magnet and Power Supply LCW monitoring

EIC


Pablo Campero, Brian Eng

- Installed Ansys *Fluid Fluent* software (uses cell-centered analysis); unable to use software since licenses were not available
- Continued with thermal analysis of Be section using Ansys *Fluid (CFX)* which uses vertex-based analysis

- ★ Added virtual components which have properties of air on the outside and N₂ inside to the model with an enclosure to simulate fluids inside the Be pipe and in the annulus space formed between the Be pipe and the Si sensor L1
- ★ For the simulation, created fluid and solid domains
 - Air flow velocity = 5 m/s (per Leo Greiner)
 - N₂ flow velocity = 2 m/s (initial values selected)
- * Unable to run CFD *solver* due to unavailable site licenses for *solver*; no results
- Continued with Ansys steady state thermal analysis of Be section
 - ★ Added components to model with enclosure to simulate fluids inside Be pipe and in annulus space formed between Be pipe and Si sensor L1
 - * Ran simulation for two models with 1.24 mm and 2 mm separation

Separation between Be-Pipe and Si- Sensor L1	Be Pipe Outer face Temp	Max. Si Sensor L1 Temp	ΔT between Be Pipe & Si Sensor
[mm]	[°C]	[°C]	L1 [°C]
1.24	100.00	72.00	28.00
2.00	100.00	61.94	38.06

Steady state thermal analysis results; temperature profile shows max. and min. temperatures for model

• Meeting with Silicon Consortium and ITS3 group about work package 3 (WP3) tasks to see how JLab can contribute

DSG R&D – EPICS Alarm System

<u>Peter Bonneau</u>

- Debugging Phoebus alarm system server
 - * The alarm server monitors process variables on the network via EPICS channel access
 - ★ Upon start of the alarm server, the command console correctly reads the .xml configuration file and starts the initialization process
 - * The alarm server initialization reports *"Fetching passed alarm states"*
 - An error is shown indicating "connection to node could not be established"
 - ★ Conclusion: Apache Kafka (the database for the alarm system) *must* be configured for the alarm system *and* operational before starting the alarm server, this was not mentioned in the documentation